Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709934

RESUMO

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Assuntos
Proteína AIRE , Insulina , Receptores de Antígenos de Linfócitos T , Timo , Fatores de Transcrição , Animais , Timo/imunologia , Timo/metabolismo , Timo/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Insulina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância Imunológica , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Células Clonais , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 14: 1277365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38420512

RESUMO

Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.


Assuntos
Fatores de Transcrição , Células em Tufo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Epiteliais/metabolismo , Peptídeos/metabolismo
3.
Cell Rep ; 41(3): 111478, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261022

RESUMO

Low-dose human interleukin-2 (hIL-2) treatment is used clinically to treat autoimmune disorders due to the cytokine's preferential expansion of immunosuppressive regulatory T cells (Tregs). However, off-target immune cell activation and short serum half-life limit the clinical potential of IL-2 treatment. Recent work showed that complexes comprising hIL-2 and the anti-hIL-2 antibody F5111 overcome these limitations by preferentially stimulating Tregs over immune effector cells. Although promising, therapeutic translation of this approach is complicated by the need to optimize dosing ratios and by the instability of the cytokine/antibody complex. We leverage structural insights to engineer a single-chain hIL-2/F5111 antibody fusion protein, termed F5111 immunocytokine (IC), which potently and selectively activates and expands Tregs. F5111 IC confers protection in mouse models of colitis and checkpoint inhibitor-induced diabetes mellitus. These results provide a roadmap for IC design and establish a Treg-biased immunotherapy that could be clinically translated for autoimmune disease treatment.


Assuntos
Doenças Autoimunes , Interleucina-2 , Camundongos , Animais , Humanos , Linfócitos T Reguladores , Anticorpos/metabolismo , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...